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Discrete particles released into turbulent carrier flows respond to that turbulence
over periods of time which depend on the particle inertia and the initial state of the
particle. Due to the turbulence, the velocity of the particles becomes random and they
will become dispersed throughout the carrier flow. The level of randomness of the
particle velocities can be quantified by the particle kinetic stress and the spreading
rate is characterized by the dispersion coefficient. In the idealized case of stationary
isotropic turbulence, the kinetic stress and dispersion coefficients approach limiting
values long after release. Previous analysis by the author has provided development
times for dispersion coefficients and kinetic stress in cases where particles were
released from a point source: (i) from an initial state of rest, and (ii) with kinetic
stress identical to that found in the steady state. This paper generalizes the analysis
by allowing for arbitrary initial particle velocity and displacement distributions. As
with the previous analysis, the primary focus is on high-inertia particles. Unlike the
previous work, however, the present analysis is applicable to the common practice
in direct numerical simulations of setting initial particle velocities equal to local
fluid velocities. Several different estimators of the particle dispersion coefficient are
considered. Whereas each estimator leads to the same long-time value, the time taken
to approach this value can vary dramatically. Expressions for development times are
given for the particle kinetic stress and dispersion coefficients. Consequences of the
analysis for experimental and computational studies are discussed.

1. Introduction
The dispersion of a discrete particulate phase due to random excitation by a

turbulent carrier phase is important in industry and the environment. In industry,
the phenomenon is important in pneumatic conveying, spray-drying, combustion and
flow separation, to name but a few examples. In the environment, the spreading of
automotive, industrial and domestic pollution is a major concern. It is well known that
the turbulent dispersion is generally significantly greater than that due to molecular
diffusion. It is therefore important in practice to quantify this dispersion so that
models can be formulated for prediction of its consequences. Many of the models
used in practice use suitably modified versions of Fick’s law of diffusion. Recent
examples include Binder & Hanratty (1991), Hanratty & Binder (1993) and Mols
(1999). The dispersiveness of the particulates is then characterized by the dispersion
coefficient or dispersivity.
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Because of the importance of the phenomenon, many experimental and computa-
tional studies have tried to quantify dispersion. The general idea is to determine the
dispersion in a relatively simple flow, and to use the resultant dispersion coefficients
in numerical models of more relevant and complex flows. For example, Hinze (1975)
discusses several experimental studies on the dispersion of tracers in turbulent pipe
flows. Vames & Hanratty (1988) performed more recent experiments along the same
lines. Snyder & Lumley (1971) and Wells & Stock (1983) measured the spread of
solid particles released into a decaying grid turbulence. Karnik & Tavoularies (1989),
Tavoularies & Karnik (1989) and Huang (1996) measured dispersion in a simple
homogeneous shear flow.

Direct numerical simulation (DNS) techniques have also been used to avoid some of
the experimental uncertainties in measuring dispersion. For example, Squires & Eaton
(1991) and Elghobashi & Truesdell (1992) simulated dispersion in both decaying and
forced isotropic flows.

Almost all of the experiments and computations mentioned above have been
carried out for particles with relatively low inertia. A major reason for this is that
measurements on high-inertia particles will be strongly dependent on the initial
particle conditions. Experimentally, turbulence of high-inertia particles is unlikely to
be able to develop sufficiently in confined laboratory spaces. Similarly, DNS and
large-eddy simulation (LES) computations are very expensive and computations for
large particles may not yet be economical. If measurements are carried out on large
particles, an understanding of how well-developed the particle turbulence is likely to
be, within physical or economic constraints, is essential. This is one motivation for
the work presented in this paper, which investigates development time for various
turbulence quantities of high-inertia particles.

A second motivation arises from the many Lagrangian models other than DNS
and LES reported in the literature (see surveys by Stock 1996; Crowe, Troutt &
Chung 1996; Graham 1998). An essential aspect of characterizing the performance
of such models is to determine the long-time dispersivity of the model over a range
of conditions (see Graham & James 1996; Launay 1998, for example). In particular,
models are being developed to account for the ‘inertia effect’ where the dispersivity
of high-inertia particles exceeds that of fluid elements in the absence of gravity
(Reeks 1981). We also note the computations performed by Mei (1995), who used a
simple particle dispersion model to confirm his analytical model of particle dispersion
including nonlinear drag and history forces. For high-inertia particles, the model
developer must be sure that the simulations have been running long enough for the
particle turbulence to become very close to its long-time behaviour.

Before describing more fully the analysis carried out in this paper, it is useful to
summarize the theoretical background for studies of particle dispersion. We start with
molecular diffusion from a fixed point, which is governed by Fick’s law:

∂C

∂t
= D∇2C, (1.1)

where C is the concentration and D is the diffusion coefficient. Einstein (1905) showed
that

D = 〈X2〉/(2t), (1.2)

with 〈X2〉 being the mean-squared particle displacement.
In the case of turbulent fluid flow, D as defined above is time-dependent and Fick’s

law does not hold in this form (Hanratty, Latinen & Wilhelm 1956). For homogeneous
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turbulent flow, however, Batchelor (1948) showed that the concentration satisfies a
form of Fick’s law:

∂C

∂t
= Dij

∂2C

∂xi∂xj

, (1.3)

with the time-dependent diffusion tensor Dij given by

Dij (t) =
1

2

d

dt
〈XiXj 〉. (1.4)

Batchelor’s work followed that of Taylor (1921), who related dispersion of marked
fluid particles to the Lagrangian temporal auto-correlation of the fluid velocities:

〈X2〉 =
〈
u

′2
f

〉 ∫ t

0

∫ t ′

0

RL(τ ) dτ dt ′, (1.5)

so that

D(t) =
〈
u

′2
f

〉 ∫ t

0

RL(τ ) dτ, (1.6)

where

RL(τ ) =
〈u′

f (t)u′
f (t + τ )〉〈
u

′2
f

〉 (1.7)

is the Lagrangian velocity auto-correlation (which is assumed to be independent of t).
Most of the above analysis can be adapted for the case when the concentration in

question is that of a dispersed phase in a turbulent carrier. Three different versions
of the dispersion coefficient have been used in the literature: (i) the true dispersion
coefficient, (1.4), used by Batchelor (1948), (ii) the ‘effective’ version, (1.2), used by
Einstein (1905), and (iii) the ‘pseudo’-dispersion coefficient (1.6), used by Taylor
(1921). The most common method used in the literature is an approximation to
find the true dispersion coefficient (1.4) by numerical differentiation of the mean-
squared displacement. This method has been used by many researchers including
both experimentalists such as Taylor (1954), Vames & Hanratty (1988), Snyder &
Lumley (1971), Wells & Stock (1983) and numerical modellers including Squires &
Eaton (1991) and Elghobashi & Truesdell (1992). Others, such as Govan (1989) and
Graham & James (1996) have used the effective dispersion coefficient. Launay (1998)
characterized dispersion using the pseudo-dispersion coefficient. We note that, of
course, all three methods lead to the same value in the long-time limit.

If the long-time dispersivity is the goal of a study, experiments or computations
must be run long enough for the quantities of interest to be close to the long-time
values. Graham (1996) showed that the development time for the different estimates
is sensitive to the initial conditions of the particles in question. Two cases of particles
released from a point source were investigated previously. The first case was where the
particles were initially static. The second looked at the case where the particle initial
velocities were assumed to be ‘fully developed’. Here, the initial particle velocities
were random, from a zero-mean distribution with variance equal to that found in the
long-time limit. Generally, of course, the excited particles developed more quickly.
The analysis showed the use of the effective dispersion coefficient to be very inefficient
for high-inertia particles in that development times were an order of magnitude higher
than for the alternatives. Development times were also shown to be highly dependent
on initial particle conditions. However, the analysis is not applicable in the case in
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which the initial particle velocity is set equal to the local fluid velocity – common
practice in DNS studies, for example.

The present paper extends the work reported previously by considering the case
where the initial particle velocity and concentration distributions are arbitrary.
Development times for particle turbulence characteristics will be derived. The general
approach is similar to that used by Friedlander (1957). The above-mentioned common
practice can be accommodated by the analysis. In § 2, expressions for the particle
kinetic stress and for the true, effective and pseudo- dispersion coefficients are given.
For each of these quantities, the focus is on the development times for high-inertia
particles. The long-time behaviour for this limiting case is noted. In § 3, development
times are investigated further and expressions are derived for the times required for
the quantities of interest to develop to within a given tolerance of the long-time values.
The repercussions of the analysis are discussed in § 4. Conclusions are presented in
the final section.

2. Particle dispersion characteristics
In this paper, we restrict our attention to the motion of high-density particles for

which the equation of motion is given by

dup

dt
= β(uf − up), (2.1)

where up is the instantaneous particle velocity (in the x-direction), uf is the
instantaneous fluid velocity ‘seen’ by the particle and β is the reciprocal of the
relaxation time scale of the particle, τp . In the analysis, we are primarily interested
in high-inertia particles, for which the Stokes number is large (i.e. τp � τfp , so that
βτfp = τfp/τp � 1), where τfp is the integral scale of the fluid velocity ‘seen’ by the
particles – see below. It will be shown that the quantities of interest here depend in
general on the auto-correlation 〈u′

f (t)u′
f (t + τ )〉 (where the angled brackets indicate

ensemble-averaging) but that for high-inertia particles they are independent of the
details of this expression. This means that no information is lost in considering
only one spatial dimension. Accelerations due to gravity and other body forces are
neglected here, for simplicity (though these can easily be included and the development
times are unchanged from the present analysis). Without loss of generality, it can be
assumed that the mean fluid velocity is zero.

We further assume that the viscous drag follows Stokes’ law, so that β is a constant.
In practice, of course, drag will be nonlinear, effectively decreasing particle response
times. When gravity is important, the particle settling velocity will far exceed the
turbulence intensity; thus we can define an effective particle relaxation time and this
will be effectively constant. The linear analysis thus holds for this case and can predict
transient behaviour. The analysis is not applicable only in the relatively unimportant
case of nonlinear drag but zero gravity.

The solution to equation (2.1) is given by

up(t) = e−βtup(0) + β

∫ t

0

eβ(t ′−t)uf (t ′) dt ′. (2.2)

The mean velocity is given by averaging this equation:

〈up(t)〉 = e−βt〈up(0)〉, (2.3)
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so that the particle fluctuating velocity is

u′
p(t) = up(t) − 〈up(t)〉 = e−βtu′

p(0) + β

∫ t

0

eβ(t ′−t)uf (t ′) dt ′. (2.4)

The particle position at time t is therefore given by

xp(t) = xp(0) +

∫ t

0

up(t ′) dt ′

= xp(0) +
up(0)

β
(1 − e−βt ) + β

∫ t

0

∫ t ′′

0

eβ(t ′−t ′′)uf (t ′) dt ′ dt ′′. (2.5)

The mean and fluctuating particle positions are thus given by

〈xp(t)〉 = 〈xp(0)〉 +
〈up(0)〉

β
(1 − e−βt ), (2.6)

x ′
p(t) = x ′

p(0) +
u′

p(0)

β
(1 − e−βt ) + β

∫ t

0

∫ t ′′

0

eβ(t ′−t ′′)uf (t ′) dt ′ dt ′′. (2.7)

The equations above are used as the basis of the remainder of this paper.

2.1. Global particle kinetic stress E(t)

Squaring u′
p(t) and taking the ensemble average, we obtain

E(t) = 〈u′
p(t)2〉 = e−2βt〈u′

p(0)2〉 + 2e−2βt

∫ t

0

eβt ′ 〈uf (t ′)u′
p(0)〉 dt ′

+ β2e−2βt

∫ t

0

∫ t

0

eβ(t ′+t ′′)〈uf (t ′)uf (t ′′)〉 dt ′ dt ′′. (2.8)

If we assume that the initial particle velocity and the fluid velocity are uncorrelated,
the second term in (2.8) vanishes. The third term is exactly the same as that arising if
the initial particle velocity is zero (i.e. the case treated by Graham 1996). Eventually,
therefore

E(t) = 〈u′
p(0)2〉e−2βt +

β

2

〈
u′2

f

〉 ∫ t

0

[2e−βτ − e−2βt (eβτ + 1)]Rfp(τ ) dτ, (2.9)

where Rfp(τ ) is the auto-correlation of the fluid velocity seen by a particle. For high-
inertia particles (1/β � τfp), and long times (t � 1/β), this integral is independent
of the form of Rfp(τ ) and depends only on the associated integral time scale τfp .
Equation (2.9) becomes

E(t) = 〈u′
p(0)2〉e−2βt +

〈
u′2

f

〉
βτfp(1 − e−2βt )

= E0e
−2βt + E(1 − e−2βt ), (2.10)

where E0 = 〈u′
p(0)2〉 is the initial value of the particle kinetic stress and E = βτfp〈u′2

f 〉
is the long-time value of this quantity for high-inertia particles.

The above expression is consistent with the analysis given in Graham (1996) for
the cases of initially static (E0 = 0) and initially excited (E0 = E) particles. Note that
this quantity is not the same as the local entity that would be measured by particle
velocimetry. The global particle kinetic stress is given by ensemble-averaging over all
particles at a given time. On the other hand, the local kinetic stress is an average over
all particles at a given point in space at a given time. It is possible to analyse this
using a p.d.f. approach, but that is beyond the scope of the present paper.
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In order to test the validity of these expressions, simulations were carried out using
a simple ‘eddy interaction model’ (Graham 1996). The underlying flow was isotropic
turbulence with mean speed 0, Lagrangian integral time scale τL = 1; 10 000 high-
inertia computational particles (τp = 100) were used. Using values of k =0, 1, 2, 5 and
10, and considering t up to 5τp , the maximum relative error between predicted ana-
lytical values for E(t) and computed numerical ones was less than 3.3%. This is within
the ‘error bars’ of the computed values; thus the predictive value of the analytical
expressions is excellent.

2.2. Particle dispersion coefficient D(t)

The particle dispersion coefficient is given by

D(t) =
1

2

d

dt
〈x ′

p(t)2〉 = 〈u′
p(t)x ′

p(t)〉. (2.11)

Multiplying the expression for u′
p(t) (2.4) by that for x ′

p(t) (2.7), ensemble averaging
and simplifying the resulting integral gives

D(t) =
1

β
e−βt (1 − e−βt )E0 +

∫ t

0

[1 + eβ(−2t+τ ) − e−βt (1 + eβτ )]Rpf (τ ) dτ, (2.12)

where we have again assumed that the initial particle velocity and the fluid velocity
are uncorrelated. For small β and large t , this becomes

D(t) = E0

1

β
e−βt (1 − e−βt ) + D(1 − e−βt )2, (2.13)

where D = 〈u′2
f 〉τfp is the long-time value of the particle dispersion coefficient.

Again, simulations were carried out using an eddy interaction model. Predicted
values agreed with computed ones to within a few percent, again within the ‘error
bars’ of the computed values. In this case, the main contributor to the error is the
numerical differentiation of the dispersion. Again, therefore, the predictive value of
the analytical expression for D(t) is excellent.

2.3. Effective dispersion coefficient Deff(t)

Dispersion coefficients are in practice often approximated by using the expression

Deff(t) =
1

2t
〈x ′

p(t)2〉, (2.14)

which approaches the previous expression for the dispersion coefficient in the long-
time limit. Forming the product 〈x ′

p(t)2〉 using equation (2.7) and simplifying after
dividing through by 2t gives

Deff(t) =
1

2β2t

{
β2X2

0 + E0(1 − e−βt )2

+

∫ t

0

[
2(t − τ ) − 1

β
(2 + e−βτ + e−βt (2 + e−βτ + eβτ ) + e−2βte−βτ )

]
Rpf (τ ) dτ

}
,

where X2
0 is the initial variance of the particle displacement, and we have again

assumed that the inter-correlations between the fluid velocity and initial particle
velocity and displacement are zero. For t � 1/β � τfp , the contribution from X2

0 is
negligible compared with that due to E0 (i.e. the variance of the initial particle velocity
is much more influential than that of the initial particle displacement). The effective
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dispersion coefficient can then be approximated as

Deff(t) =
1

2β2t
[E0(1 − e−βt )2] + D

[
1 − 1

2βt
(1 − e−βt )(3 − e−βt )

]
. (2.15)

Once again, equation (2.15) is consistent with the expressions given in Graham (1996).
Simulations to test the validity of the predictions were again carried out using an

eddy interaction model, with the same details as previously. Computed values agreed
to within 3% of the predicted values, again within the ‘error bars’ of the computed
values.

2.4. Pseudo-dispersion coefficient Dps(t)

Following Graham (1996), we define the ‘pseudo-dispersion coefficient’ to be the
integral of the particle velocity auto-correlation. In practice, there are several
alternative ways that one might define the pseudo-dispersion coefficient, namely

(i)

∫ ∞

0

Rp(t, τ ) dτ,

(ii)

∫ t

0

Rp(τ ) dτ,

(iii)

∫ (1−α)t

0

Rp(αt, τ ) dτ,

where

Rp(t, τ ) = 〈u′
p(t)u′

p(t + τ )〉 (2.16)

is the particle velocity auto-correlation and Rp(τ ) = Rp(∞, τ ) is its limiting form as
t → ∞.

Expression (i) is that used in Graham (1996) – it assumes that the value of the
particle velocity correlation is known for an infinite range of times. Expression (ii)
requires a priori knowledge of the particle velocity auto-correlation and is exactly equal
to the true dispersion coefficient if E0 = E. In expression (iii), the total computation
time is t , with a fraction α of this time used to develop the particle turbulence, the
remainder being used to integrate the velocity auto-correlation. In practice, we are
interested in the real cost of evaluating this form using finite computation times
and without any assumptions on the form of the velocity correlations, so that we
concentrate on expression (iii).

For small β and large t , the auto-correlation becomes

Rp(t, τ ) = E0e
−β(2t+τ ) + Ee−βτ (1 − e−2βt ). (2.17)

The pseudo-dispersion coefficient is then given by

1

β
E0e

−2αβt (1 − e−(1−α)βt ) + D(1 − e−(1−α)βt )(1 − e−2αβt ). (2.18)

For this method, two questions now arise, namely what is the total time required
for the computation and secondly what is the most efficient choice for α?

3. Development times for high-inertia particles
In this section, we investigate the time required for particles to acquire the dispersion

characteristics mentioned previously. This follows the analysis given in Graham (1996),
which demonstrated that initial conditions are highly influential in determining these
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Figure 1. Normalized particle kinetic stress E(t)/E vs. βt .

development times. In general, the development times for initially static particles were
found to be significantly longer than for the initially excited particles. A corollary
of the previous analysis was that the effective dispersion coefficient (which is used
frequently in numerical studies) was shown to be a very time-consuming method for
determination of long-time particle dispersivity.

It was demonstrated that the pseudo-dispersion coefficient also developed more
quickly than the true dispersion coefficient. Furthermore, the true dispersion coefficient
will in practice be approximated by numerical differentiation, which may introduce
extra uncertainties in stochastic approximations. On the other hand, the pseudo-
dispersion coefficient as defined previously did not properly account for the finite
time over which the particle velocity auto-correlation must be integrated in practice.
However, the resulting numerical integration may be generally less susceptible to
stochastic variation than numerical differentiation. It is therefore not clear which is
the most efficient method for evaluating dispersion coefficients. This point is explored
in § 4 of this paper.

We should note that many of the resulting expressions could be derived within the
kinetic equation methodology of Reeks (1991). It could be argued that this method is
more elegant than that adopted here. However, the present analysis, which develops
quantities directly from the expressions for the particle velocity and displacement,
has the advantage of simplicity and the amount of analytical effort in either case is
similar.

3.1. Global particle kinetic stress

The development of the normalized particle kinetic stress E(t)/E is illustrated for
different initial conditions in figure 1. In general, E(t) is monotonic: if it is initially
less than its long-time value, it increases towards its limit value and it correspondingly
decreases towards its limit if it initially exceeds this limit. In the following, we are
interested in the development time for this quantity, which is defined as the time
required for the relative difference between E(t) and its long-time limiting value E to
lie within a specified tolerance ρ.
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Figure 2. Development times: particle kinetic stress.

Equation (2.10) can be rearranged to give the relative error in the kinetic stress:

E(t) − E

E
= (k − 1)e−2βt , (3.1)

where k = E0/E is the ratio of initial to final particle kinetic stress. The development
time can be expressed as the time required for the left-hand side of (3.1) to be equal
to some predetermined tolerance level ρ. Beyond this time, the particle kinetic stress
will always be within the allowed tolerance. The development time is given by

tρ =
1

2β
ln

(
|k − 1|

ρ

)
. (3.2)

Note that E(t) either increases monotonically if k < 1 (i.e. the initial kinetic stress is
less than the final value) or it decreases monotonically if k > 1. Negative solutions for
the development time are also possible, in which case the development has ‘already’
occurred and the initial particle kinetic stress is within the required relative tolerance.
Figure 2 illustrates the development times in terms of tolerance level plotted as a
function of k. The symmetry about the line k =1 illustrates that the development
time for a given tolerance depends only on the difference between the initial particle
kinetic stress and the long-time value.

Here, we have found the development time for the global kinetic stress (i.e. averaged
over particles at all locations). It can be shown using a p.d.f. approach that the
development time for the local kinetic stress is 1/2βρ. This is significantly greater
than the time for the global kinetic stress to develop.

3.2. Particle dispersion coefficient D(t)

Whereas development of the particle kinetic stress is monotonic, the evolution of
the dispersion coefficients is more complex. Figure 3 illustrates the development of
the true dispersion coefficients (normalized with the long-time value D) for the cases
k = 0, 1, 2, 3 and 4 (where k is again defined as above as the initial normalized particle
kinetic stress). For k < 2, the dispersion coefficient is monotonic. However, for k in
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Figure 3. Normalized particle dispersion coefficient D(t)/D vs. βt .

excess of 2, the dispersivity grows from its initial value of zero, quickly exceeds its
limiting value, grows to a maximum and then decays monotonically.

From equation (2.13), the relative error in the true dispersion coefficient is given by

D(t) − D

D
= ke−βt (1 − e−βt ) − e−βt (2 − e−βt ). (3.3)

The development time is then the solution of the above equation, with the left-hand
side set equal to ±ρ:

±ρ = e−βt (k − 2) + e−2βt (1 − k). (3.4)

Substituting y = e−βt we obtain a quadratic:

±ρ = y(k − 2) + y2(1 − k), (3.5)

which has the solution

y =




(
2 − k

2(1 − k)

(
1 ±

(
1 ± 4ρ

(1 − k)

(k − 2)2

)1/2))
, k 
= 1, k 
= 2,

ρ, k = 1,

ρ1/2, k = 2.

(3.6)

Clearly, y in equation (3.6) must be in the range 0 <y � 1. In order to determine
which of the possible solutions to use, we now investigate equation (3.4) fully.

For 0 � k � 2 the normalized dispersion coefficient never exceeds unity and thus
we use −ρ (corresponding to the lower tolerance level) in the expression for the deve-
lopment time. For k > 2, there is a local maximum at t = (1/β) ln (2(1 − k)/(2 − k)),
at which the dispersion coefficient takes the value

k2

4(k − 1)
> 1. (3.7)

Two possibilities exist. The first is that the maximum value attained by the dispersion
coefficient never exceeds the maximum tolerance level +ρ so that the normalized
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dispersion coefficient D(t)/D always lies within the tolerance after it has first reached
this level. This is equivalent to the condition

ρ �
(k − 2)2

4(k − 1)
. (3.8)

Here, the negative square root is taken in the expression for the development time.
Otherwise, D(t)/D crosses the tolerance boundaries at three different times, twice

‘on the way up’ as it climbs to its maximum, and finally on the way back down,
having attained its maximum (see figure 3). In this case, the development time should
be taken as the largest of the three times given by the roots of equation (3.4).

To summarize, the development time is determined as

tρ =




1

β
ln

(
2(1 − k)

(2 − k)(1 − (1 − 4ρ(1 − k)/(k − 2)2)1/2)

)
, 0 � k � 2, k 
= 1, 2 or k � 2,

ρ �
(k − 2)2

4(k − 1)
,

1

β
ln

(
1

ρ

)
, k = 1,

1

2β
ln

(
1

ρ

)
, k = 2

1

β
ln

(
2(1 − k)

(2 − k)(1 − (1 + 4ρ(1 − k)/(k − 2)2)1/2)

)
, k � 2, ρ < (k − 2)2/4(k − 1),

(3.9)

Note that, for small ρ, the development time is

tρ =




1

β
ln

(
|k − 2|

ρ

)
, k 
= 2,

1

2β
ln

(
1

ρ

)
, k = 2.

(3.10)

Figure 4 illustrates the development times for the true dispersion coefficient as a
function of k and the magnitude of the tolerance, ρ. For low tolerances, there is
a sharp minimum development time corresponding to k = 2. For higher tolerances,
the minimum is less sharp and shifts towards higher values of k. The minimum in
each case corresponds to the situation where the initial particle conditions are such
that the maximum dispersivity is only just within the tolerance level. Any increase in
the initial particle kinetic stress takes the maximum dispersivity outside the allowed
range, which corresponds to the second possibility mentioned above. This explains
the large jump in development times beyond the minimum values.

3.3. Effective dispersion coefficient Deff(t)

The development of the normalized effective dispersion coefficient is illustrated for
various initial particle conditions in figure 5. Again, the development is rather complex.
The effective dispersivity increases monotonically for small values of the initial
particle kinetic stress. For large values of E0, the dispersivity increases from its initial
value of zero, reaches a maximum and then decreases towards its long-time value.
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Figure 4. Development times: particle dispersion coefficient.

Figure 5. Normalized effective particle dispersion coefficient Deff(t)/D vs. βt .

Equation (2.15) can be written in the form

Deff(t) − D

D
=

1

2βt

[
E0

E
(1 − e−βt )2 − (1 − e−βt )(3 − e−βt )

]
, (3.11)

where we have again used the fact that E = βD for heavy particles. Setting the
left-hand side of (3.11) to a tolerance level of ±ρ, this equation becomes

±ρ =
1

2βt
k(1 − e−βt )2 − (1 − e−βt )(3 − e−βt ) (3.12)

(where k is again defined as the normalized initial particle kinetic stress).
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Closed-form solutions are not generally available for this equation. Note however
that, for small ρ, development times are large compared with 1/β . This means that
the exponential terms can be neglected and the development time is then simply

tρ =
1

2βρ
|k − 3|. (3.13)

Note that this expression appears to show that the effective dispersion coefficient
is immediately ‘fully developed’ when k =3. This is not in fact the case and the
development time here is the solution of

ρ =
2

βt
e−βt (1 − e−βt ). (3.14)

The solutions to this equation must be approximated numerically. For completeness,
note that development times for tolerances of 0.1, 0.05, 0.01, 0.005, 0.001 and 0.0001
are 2.12/β , 2.64/β , 3.91/β , 4.48/β , 5.83/β and 7.84/β , respectively. Clearly, a graph
of development time βt versus k (not shown here) would show a set of straight lines
through k = 3, βt = 0, with slope equal to 1/(2ρ).

3.4. Pseudo-dispersion coefficient Dps(t)

When the upper limit of integration of the particle velocity auto-correlation is infinite,
the time development of the pseudo-dispersion coefficient is identical to the particle
kinetic stress, i.e. it is monotonic for all initial conditions and development times are
again given by equation (3.2).

When the finite integration time for evaluation of the particle auto-correlation is
taken into account, however, a much more complex picture emerges. The pseudo-
dispersion coefficient is given by

Dps(t) − D

D
=

(
E0

E
− 1

)
e−2αβt (1 − e−(1−α)βt ) − e−(1−α)βt . (3.15)

Setting the left-hand side of this expression equal to ±ρ, we obtain the equation

±ρ = (k − 1)e−2αβt
(
1 − e−(1−α)βt

)
− e−(1−α)βt , (3.16)

where k is as defined previously.
Contour plots characterizing the time required for development of the solution

are given as functions of α in figure 6(a–d). The contours show the times at which
|Dps(t) − D|/D reaches values of ρ = 0.1, 0.01 and 0.001, for 0 <α � 1. For k < 2,

Dps(t) never reaches its long-time value D. For k > 2, Dps(t) can exceed the long-time
value, depending on the value of α.

The behaviour in several sections of the contour plot can be analysed. For α � 1/3
and t � 1, the contours are described well by the relationship

t =
ln(ρ)

β(α − 1)
, (3.17)

independently of k.
For α � 1/3 and t � 1, the contours are given by

t =
1

2βα
ln

(
|k − 1|

ρ

)
, k 
= 1. (3.18)
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Figure 6. Development times: pseudo-particle dispersion coefficient: solid lines: solutions to
equation (3.16); dotted lines: equation (3.17); dashed lines: equation (3.18); dot-dashed lines:
equation (3.20). (a) k = 0, (b) k = 1, (c) k = 2, (d) k = 10.

For a given tolerance ρ, these two curves intersect at the point

α =




ln(|k − 1|/ρ)

ln(|k − 1|/ρ3)
, k 
= 1,

0, k = 1,

t =
1

2β
ln(|k − 1|/ρ3|).




(3.19)

These points lie on a curve defined by the relationship

t =
ln(|k − 1|)
β(3α − 1)

. (3.20)

From figure 6(a–d), it is clear that the point of intersection provides, for given k

and ρ, reasonable estimates of both the best value of α and the time tρ required
for the solution to develop to within the required tolerance. Development times are
underestimated using this method unless the initial particle stress exceeds the long-time
value (i.e. unless k > 1). For k > 1, the method slightly overestimates the development
times. In general, however, the time given by equation (3.19) is a reasonable estimate
of the true development time, particularly for low tolerances. Note also that, for k > 2,
Dps(t) is exactly equal to its long-time value for the value of α in (3.19).

The relationship (3.20) is not valid for k = 1 of course. In this case, the initial particle
kinetic stress is exactly equal to its long-time value. Here, the particle turbulence itself
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clearly takes no time to develop and all of the computational effort must go into the
integration of the auto-correlation (i.e. choose α = 0). The development time is then
equal to (1/β) ln(1/ρ).

This discussion leads eventually to a much simpler way of looking at the problem.
The time t1 required for the auto-correlation to develop is t1 = (1/2β) ln(|k − 1|/ρ).
In addition, extra time t2, equal to (1/β) ln(1/ρ) is required to integrate the auto-
correlation. The total computation time can thus be written as

tρ =




1

2β
ln

{
|k − 1|

ρ
+

1

β
ln(1/ρ)

}
, k 
= 1

1

β
ln(1/ρ), k = 1.

(3.21)

For k < 1, both the particle turbulence and the numerical integration time are under-
developed so that this expression slightly underestimates the true development time.
For k > 1, the particle turbulence is over-developed and the numerical integration
under-developed, the net result being that the pseudo-dispersion coefficient is exactly
equal to its final value. For k < 2, Dps(t) subsequently increases within the tolerance
before finally decreasing towards the long-time limit. For k > 2, Dps(t) subsequently
decreases within the tolerance before finally increasing towards the long-time limit.
Development times from equation (3.21) are identical in form to those illustrated in
figure 2 except that they must be shifted upwards by an amount equal to (1/β) ln(1/ρ).

The development times for this quantity are greater than for the true dispersion
coefficient but significantly lower than for the effective dispersivity. As noted above,
however, the use of numerical integration may mean that it is subject to more variation
than the true dispersivity, which must be estimated in practice using numerical
differentiation. The optimal choice (i.e. the fastest developing subject to acceptable
variability) between true and pseudo- dispersivities could be determined by also
finding the variance of these quantities as functions of time (rather than finding only
the mean value as here). However, that is beyond the scope of this paper.

4. Discussion
In this section, we investigate the consequences of the foregoing analysis. First,

we discuss the repercussions for experimental studies. Then we look at two distinct
kinds of numerical simulation. The first kind is DNS computations whose purpose is
to detect and predict new phenomena. Then we consider particle dispersion models
whose purpose is either to mirror known behaviour in special cases so that they can
be used with confidence in more realistic and complex flows or to confirm analytical
predictions.

Unsurprisingly, the most popular method of evaluating dispersion coefficients in
experiments is to use the true dispersion coefficient. In practice, this entails numerical
differentiation of the mean-squared displacement (or, equivalently, estimating the
slope of the graph of X2

p(t) against t). As mentioned in the introduction, most
experimental studies are restricted to low-inertia particles, which respond rapidly
to the fluid turbulence. It is easy to see why experimentalists have not generally
used heavier particles. Hutchinson, Hewitt & Dukler (1971) estimated the turbulent
eddy time scale in the flow through a pipe of radius R as td = 0.35R/u∗. Hinze
(1975) uses the data from Laufer (1954) to show that u∗/U , the ratio of the friction
velocity to the maximum mean velocity is around 0.035 for a Reynolds number of
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500 000. Thus, for a 20 m s−1 turbulent air flow in a 10 cm pipe, td is roughly 0.05 s. A
particle with a relaxation time τp of 0.5 s would be ‘heavy’, having a Stokes number
β = 1/10. Starting such particles from rest, it would take a distance of approximately
Uτp ln(2/0.05) ∼= 37 m for the true dispersion coefficient to develop. For heavier
particles, or with less controlled initial conditions, development lengths would be still
greater.

In the case of pipe flow, it is likely that by the time the dispersion coefficient is
fully developed, many of the particles will have been affected by pipe–wall collisions.
For example, for the above particle, the dispersion coefficient is developed to within
95% of its long-time value at around 3.7τp . At this time, the dispersion (i.e. the mean-
squared displacement) is about 0.5 m2 s−2 thus giving a root-mean-square displacement
of about 7 cm. Since this is greater than the radius of the pipe, pipe–wall collisions
can be expected to have been important well before this time.

Numerical experiments are less subject to such constraints than their physical
counterparts. Thus, although the idealized case of stationary isotropic turbulence
considered cannot be realized physically, it remains an important idealized test case,
both for numerical experiments using DNS or LES and also for calibrating new
multiphase flow models. Recent DNS studies of isotropic turbulence include those
of Boivin, Simonin & Squires (1998), Sundaram & Collins (1999) and Ferrante &
Elghobashi (2003). Although these authors primarily consider turbulence modulation
effects rather than dispersion, some general observations can be made on the influence
of the initial conditions. Some observations on the DNS results of Squires & Eaton
(1991) and Elghobashi & Truesdell (1992) are made below.

Squires & Eaton (1991) and Elghobashi & Truesdell (1992) have computed
dispersion coefficients of solid particles in decaying and forced isotropic turbulence.
Squires & Eaton used particles with Stokes number 1/βτfp up to 3.72 in decaying
turbulence. The Stokes numbers for Elghobashi & Truesdell were generally less than
1. Several interesting points can be made by looking at the results. The first point
is that the initial particle velocities are set equal to the velocities of the surrounding
fluid. This appears to be standard practice, since it was also adopted by Boivin et al.
(1998), Sundaram & Collins (1999) and Ferrante & Elghobashi (2003). However, it
does not appear to be best practice. For βτfp = 1/3.72 (the highest-inertia particles

used by Squires & Eaton (1991)) this means that E0 is about 3.72 times E. This initial
high kinetic stress is difficult for the particle to shake off. The most efficient choice
for computations, given that particle kinetic stress and dispersion coefficients were
both of interest, would be to set the initial particle kinetic stress equal to its long-time
value. This could be achieved by setting the initial particle velocity to 1/3.721/2 times
the surrounding fluid velocity. If turbulence modulation is the main topic of interest,
or if the long-time particle kinetic stress is not known, a better choice would be to
set the particle velocity equal to the local mean velocity, which should be known a
priori.

The second point to be made regarding these computations is that both pairs
of authors use the mean-squared slip velocity v2

rel(t) to test the development of the
particle turbulence. This approach was also adopted by Sundaram & Collins (1999).
In particular, the time at which this quantity reaches a maximum is taken to be the
time at which the particles had ‘adjusted to the decaying turbulence’. Expressed in
terms of multiples of particle time constant, however, the location of this maximum
tends to zero for higher-inertia particles. Thus the particles are only beginning to
respond to the turbulence at this time, and a much greater time is required for the
particles to fully respond.
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When the initial particle velocity is set equal to the local fluid velocity, the mean-
squared slip velocity develops much more quickly than the dispersion coefficients.
Suppose that K is the ratio of the initial mean-squared particle velocity to the
mean-square of the fluid velocity fluctuations. It can be shown that the time for this
quantity to develop within a tolerance of ρ of its long-time value is ln(K/ρ)/(2β).
When the initial particle velocity is set equal to the local fluid velocity, K is unity.
The development time for v2

rel(t) is then ln(1/ρ)/(2β), i.e. 5τfp ln(1/ρ) for a heavy
particle with βτfp = 1/10. For such a particle, the initial condition would mean a value

of k = E0/E = 10. Development times for the particle kinetic stress and dispersion
coefficient would then be 5τfp ln(8/ρ) and 10τfp ln(9/ρ), respectively. Thus, while
v2

rel(t) develops to within a tolerance of 0.05 of its long-time value within 15 s,
the corresponding development times for the particle kinetic stress and dispersion
coefficient are 25 s and 52 s, respectively. It can therefore be misleading to base
judgements of particle turbulence development on the progress of v2

rel(t).
Other features of the results can also be explained. For example, the ‘overshooting’

of the dispersion coefficients in Squires & Eaton figures 9 and 13, and for the uranium
particles in figure 12(b) of Elghobashi & Truesdell is possibly due to too much particle
kinetic stress at the beginning of the computations. The form of the curves is similar
to figure 3 in the present paper, and even though the Elghobashi & Truesdell particles
were of relatively low-inertia, similar behaviour is seen when substituting appropriate
values in equation (2.12) above. An important consequence of this is that, since the
dispersion coefficients in Squires & Eaton are not fully developed, their conclusion
that “the dispersion of particles . . . is greater than that of fluid elements” may not be
valid in the long-time limit.

As mentioned above, calibration of numerical models by considering their
performance in isotropic turbulence is an important part of model validation.
Typically, this requires that models are capable of simulating the three main effects
predicted from analysis: ‘crossing trajectories’ – reduced dispersion under gravity;
‘inertia’ – enhanced dispersion for heavy particles without gravity; and ‘continuity’ –
different dispersivities in directions parallel and perpendicular to gravitational drift
(see the discussion in Graham 1998, for example). Unfortunately, there is no standard
approach for choosing development times and this means that the performance of
some models can be misinterpreted.

Recent examples of calibrating numerical methods by considering isotropic
turbulence include Wang & Stock (1992), Lu, Fontaine, & Aubertin (1993), Huang
(1996), Graham & James (1996) and Launay (1998). A variety of approaches, both
to computing diffusivities and to judging ‘particle turbulence development’, is used in
these papers.

Wang & Stock (1992) were interested in tracer particles and thus needed no time
for the particle kinetic stress to develop. They compared analytical and numerically
predicted velocity auto-correlations. Lu et al. (1993) calculated dispersion coefficients
using a time-series model. Their development time was about 1.4 s (i.e. the time taken
for particles with an average speed of 0.66 m s−1 to travel 0.9 m). However, their
heaviest particles had a time constant of 1.6 s. Having started the particles with the
same velocity as the fluid, this means that the particles did not have time to shake off
the initial conditions. The fact that the dispersion coefficient is not fully developed
is evident from the curvature in their dispersion curve (figure 12). Again, this casts
doubt upon the validity of their long-time dispersivity values for the heaviest particles.

Graham & James (1996) calculated the dispersivities produced by eddy-interaction
model predictions over a range of Stokes numbers. For their heaviest particles
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(β =1/10), it is clear (their figure 3) that the dispersion coefficients were still
developing. The effective version of the dispersion coefficient was used. It is also
apparent from their results (their figures 1 and 2) that particle dispersion coefficients
were still in the process of developing. For the Graham & James (1996) results,
computations were allowed to run for a duration of 1000τL ≈ 1000τfp , having begun
with static particles. Using the present analysis, it can be seen that the resulting
dispersion coefficients for the heaviest particles can be expected to be around 98.5%
of the true long-time values at this time. Such computations are very expensive
computationally. The cost can be greatly reduced by choosing the appropriate method
of computing dispersion coefficients and setting the most beneficial initial conditions.
For example, the true dispersion coefficient for the Graham & James computations
would have developed to the same extent within 42τL, if the initial particle kinetic
stress was set equal its long-time value. This time could be halved by setting E0 = 2E.
This represents a huge reduction in computation times – a factor of almost 50.

Huang (1996) used both Monte Carlo and random Fourier models in both isotropic
flow and in a simple turbulent shear flow. In her Monte Carlo simulations, the
initial particle velocity is set equal to the instantaneous fluid velocity. The flow is
then allowed to develop for an unspecified time and then dispersion coefficients are
calculated using a numerically differentiated true dispersion coefficient. The computed
values were higher than the predicted values. Again, this is possibly due to an initial
excess in the particle kinetic stress.

Launay (1998) used both an eddy-interaction model and a generalized Markov chain
model to compute dispersion coefficients. She used the pseudo-dispersion coefficient,
and allowed about 1 s for the particle turbulence to develop, and a further 4 s to
integrate the velocity auto-correlation (private communication, 1999). The heaviest
particles in her computations had a time constant of roughly 1 s. The characteristic
‘tailing-off’ of the dispersion coefficients for high-inertia particles in Huang’s figures I-5
and II-9 indicates that the particle turbulence is still developing at the end of the
computations. Having started the computations with particles at rest, the particle
kinetic stress (and hence the velocity auto-correlation) is only around 86% of its
long-time value. A development time of 1.5 s would raise this to 95%. To compensate,
less time (3 s should have been sufficient) could have been spent on the integration of
the particle velocity auto-correlation. In this way, the computations could have been
completed in 4.5 s, giving dispersion coefficients within a tolerance of 5%.

Finally, we note that evaluating dispersivities by visual inspection or numerical
differentiation from graphs of mean-squared particle location against time has been
commonplace (Snyder & Lumley 1971; Wells & Stock 1983; Lu et al. 1993; for
example). Whilst this is reliable for low-inertia particles, the curvature (i.e. the
derivative of the true dispersion coefficient) could be sufficiently small over a large
range of times for high-inertia particles to lead to misinterpretation of the results.
The net effect would be to misjudge dispersion coefficients for heavier particles (i.e.
overpredict if k < 2 and underpredict otherwise).

5. Conclusions
This paper has investigated the influence of the initial velocity and displacement

distributions on dispersion characteristics of high-inertia particles in homogeneous
turbulence. The key dimensionless quantity characterizing development times is k =
E0/E, the ratio of the initial particle kinetic stress to its long-time value. The influence
of the initial displacement distribution of the particles is less important. The results of
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the analysis have been used to interpret results from numerical studies. The following
conclusions can be drawn.

(a) For the high-inertia particles, development times are proportional to the particle
relaxation time.

(b) Development of the particle kinetic stress E(t) is monotonic: increasing if
initially less than the long-time value, and decreasing otherwise.

(c) Development of the true dispersion coefficient D(t) is non-monotonic for
particles with high initial kinetic stress. In this case, the dispersion coefficient can
increase to well above its long-time value before decreasing towards its limiting value.

(d) Development of the effective dispersion coefficient Deff(t) exhibits similar non-
monotonic behaviour. Development times, however, are much greater than for the
true dispersion coefficient.

(e) Development times for Dps(t) slightly exceed those for E(t) and D(t), but are
significantly less than those for Deff (t).

(f ) The standard practice of setting initial particle velocities equal to instantaneous
fluid velocities in DNS can be inefficient – a better choice would be to set particle
velocities equal to local mean fluid velocities.

(g) The common practice of evaluating the ‘mean-squared slip velocity’ to
determine whether flows have developed sufficiently can be misleading since this
quantity can develop much more quickly than other particle quantities.

REFERENCES

Batchelor, G. K. 1948 Diffusion in a field of homogeneous turbulence. Austral. J. Sci. Res. A 2,
437–450.

Binder, J. L. & Hanratty, T. J. 1991 A diffusion model for droplet deposition in gas/liquid annular
flow. Intl J. Multiphase Flow 17, 1–11.

Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation ot turbulence
modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263.

Crowe, C. T., Troutt, T. R. & Chung, J. N. 1996 Numerical models for two-phase turbulent flows.
Annu. Rev. Fluid Mech. 28, 11–43.

Einstein, A. 1905 On the movement of small particles suspended in a stationary liquid demanded
by the molecular-kinetic theory of heat. In Einstein (1956) Investigations on the Theory of the
Brownian Movement. Dover Publications edition of 1926 translation.

Elghobashi, S. E. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying
isotropic turbulence. J. Fluid Mech. 242, 655–700.

Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in
particle-laden isotroci turbulence. Phys. Fluids 15, 315–329.

Friedlander, S. K. 1957 Behavior of suspended particles in a turbulent fluid. AIChE J. 3, 381–385.

Govan, A. H. 1989 A simple equation for the diffusion coefficient of large particles in a turbulent
gas flow. Intl J. Multiphase Flow 15, 287–294.

Graham, D. I. 1996 Dispersion of initially-static and initially-excited particles in a turbulent fluid
flow. Intl J. Multiphase Flow 22, 1005–1021.

Graham, D. I. 1998 Analytical comparison of Lagrangian particle dispersion models. Paper 125,
ICMF’98, Lyon, France.

Graham, D. I. & James, P. W. 1996 Turbulent dispersion of particles using eddy interaction models.
Intl J. Multiphase Flow 22, 157–175.

Hanratty, T. J. & Binder, J. L. 1993 Use of Lagrangian statistics to describe turbulent dispersed
flows. In Particulate Two-Phase Flow, Butterworth-Heinemann.

Hanratty, T. J., Latinen, G. & Wilhelm, R. H. 1956 Turbulent diffusion in particulately fluidized
beds of particles. AIChE J. 2, 372–380.

Hinze, J. O. 1975 Turbulence. McGraw Hill.



168 D. I. Graham

Huang, X. 1996 Turbulent dispersion of particles in a homogeneous uniform shear. PhD thesis,
Washington State University, USA.

Hutchinson, P., Hewitt, G. F. & Dukler, A. E. 1971 Deposition of liquid or solid dispersions
from turbulent gas streams: a stochastic model. Chem. Engng Sci. 26, 419–439.

Hyland, K. E., McKee, S. & Reeks, M. W. 1999 Exact analytic solutions to turbulent particle flow
equations. Phys. Fluids 11, 1249–1261.

Karnik, U. & Tavoularies, S. 1989 Measurements of heat diffusion from a continuous line source
in a uniformly sheared turbulent flow. J. Fluid Mech. 202, 233–261.

Laufer, J. 1954 The structure of turbulence in fully developed pipe flow. NACA Tech. Rep. R 1174.

Launay, K. 1998 Analysis of Lagrangian models for predicting the turbulent particles dispersion
and proposal of a model integrating the fluid turbulence experienced by the particle. PhD
thesis, Universite Louis Pasteur, Strasbourg.

Lu, Q. Q., Fontaine, J. R. & Aubertin, G. 1993 A Lagrangian model for solid particles in turbulent
flows. Intl J. Multiphase Flow 19, 347–367.

Mei, R. 1995 The dispersion of particles with nonlinear drag and history force in homogeneous
turbulence. Proc. 6th Intl Symp on Gas-Solid Flows, Hilton Head Island, S. Carolina, USA
(ed. D. E. Stock, Y. Tsuji, M. W. Reeks, E. E. Michaelides & M. Gautam). ASME FED-
vol 228, pp. 411–417.

Mols, B. M. 1999 Particle dispersion and deposition in horizontal turbulent channel and tube flows
PhD thesis, Delft Technical University, The Netherlands.

Reeks, M. W. 1991 On a kinetic equation for the transport of particles in turbulent flows. Phys
Fluids A 3, 446–456.

Snyder, W. H. & Lumley, J. L. 1971 Some measurements of particle velocity autocorrelation
functions in turbulent flow. J. Fluid Mech. 48, 41–71.

Squires, K. D. & Eaton, J. K. 1991 Measurements of particle dispersion obtained from direct
numerical simulation of isotropic turbulence. J. Fluid Mech. 226, 1–35.

Stock, D. E. 1996 Particle dispersion in flowing gases – 1994 Freeman Scholar Lecture. Trans.
ASME: J. Fluids Engng 118, 4–17.

Sundaram, S. & Collins, L. 1999 A numerical study of the modulation of isotropic turbulence by
suspended particles. J. Fluid Mech. 379, 105–143.

Tavoularies, S. & Karnik, U. 1989 Further experiments on the evolution of turbulent stresses and
scales in uniformly sheared turbulence. J. Fluid Mech. 204, 457–478.

Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. XX, 196–212.

Taylor, G. I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond.
A CCXXIII, 446–468.

Vames, J. T. & Hanratty, T. J. 1988 Turbulent dispersion of droplets for air flow in a pipe. Exps.
Fluids 6, 94–104.

Wang, L.-P. & Stock, D. E. 1992 Stochastic trajectory models for turbulence diffusion: Monte
Carlo process versus Markov chains. Atmos. Environ. 26A, 1599–1607.

Wells, M. R. & Stock, D. E. 1983 The effects of crossing trajectories on the dispersion of particles
in a turbulent flow. J. Fluid Mech. 136, 31–62.


